Dark Matter - History of The Search For Its Composition

History of The Search For Its Composition

List of unsolved problems in physics
What is dark matter? How is it generated? Is it related to supersymmetry?

Although dark matter had historically been inferred by many astronomical observations, its composition long remained speculative. Early theories of dark matter concentrated on hidden heavy normal objects, such as black holes, neutron stars, faint old white dwarfs, brown dwarfs, as the possible candidates for dark matter, collectively known as MACHOs. Astronomical surveys failed to find enough of these hidden MACHOs. Some hard-to-detect baryonic matter, such as MACHOs and some forms of gas, were additionally speculated to make a contribution to the overall dark matter content, but evidence indicated such would constitute only a small portion.

Furthermore, data from a number of lines of other evidence, including galaxy rotation curves, gravitational lensing, structure formation, and the fraction of baryons in clusters and the cluster abundance combined with independent evidence for the baryon density, indicated that 85–90% of the mass in the universe does not interact with the electromagnetic force. This "nonbaryonic dark matter" is evident through its gravitational effect. Consequently, the most commonly held view was that dark matter is primarily non-baryonic, made of one or more elementary particles other than the usual electrons, protons, neutrons, and known neutrinos. The most commonly proposed particles then became WIMPs (Weakly Interacting Massive Particles, including neutralinos), or axions, or sterile neutrinos, though many other possible candidates have been proposed.

The dark matter component has much more mass than the "visible" component of the universe. Only about 4.6% of the mass-energy of the Universe is ordinary matter. About 23% is thought to be composed of dark matter. The remaining 72% is thought to consist of dark energy, an even stranger component, distributed almost uniformly in space and with energy density non-evolving or slowly evolving with time Determining the nature of this dark matter is one of the most important problems in modern cosmology and particle physics. It has been noted that the names "dark matter" and "dark energy" serve mainly as expressions of human ignorance, much like the marking of early maps with "terra incognita".

Historically, three categories of dark matter candidates had been postulated. The categories cold, warm, and hot refer to how far the particles could move due to random motions in the early universe, before they slowed down due to the expansion of the Universe - this is called the "free streaming length". Primordial density fluctuations smaller than this free-streaming length get washed out as particles move from overdense to underdense regions, while fluctuations larger than the free-streaming length are unaffected; therefore this free-streaming length sets a minimum scale for structure formation.

  • Cold dark matter – objects with a free-streaming length much smaller than a protogalaxy
  • Warm dark matter – particles with a free-streaming length similar to a protogalaxy.
  • Hot dark matter – particles with a free-streaming length much larger than a protogalaxy.

Though a fourth category had been considered early on, called mixed dark matter, it was quickly eliminated (from the 1990s) since the discovery of dark energy.

As an example, Davis et al. wrote in 1985:

Candidate particles can be grouped into three categories on the basis of their effect on the fluctuation spectrum (Bond et al. 1983). If the dark matter is composed of abundant light particles which remain relativistic until shortly before recombination, then it may be termed "hot". The best candidate for hot dark matter is a neutrino ... A second possibility is for the dark matter particles to interact more weakly than neutrinos, to be less abundant, and to have a mass of order 1 keV. Such particles are termed "warm dark matter", because they have lower thermal velocities than massive neutrinos ... there are at present few candidate particles which fit this description. Gravitinos and photinos have been suggested (Pagels and Primack 1982; Bond, Szalay and Turner 1982) ... Any particles which became nonrelativistic very early, and so were able to diffuse a negligible distance, are termed "cold" dark matter (CDM). There are many candidates for CDM including supersymmetric particles.

The full calculations are quite technical, but an approximate dividing line is that "warm" dark matter particles became non-relativistic when the universe was approximately 1 year old and 1 millionth of its present size; standard hot big bang theory implies the universe was then in the radiation-dominated era (photons and neutrinos), with a photon temperature 2.7 million K. Standard physical cosmology gives the particle horizon size as 2ct in the radiation-dominated era, thus 2 light-years, and a region of this size would expand to 2 million light years today (if there were no structure formation). The actual free-streaming length is roughly 5 times larger than the above length, since the free-streaming length continues to grow slowly as particle velocities decrease inversely with the scale factor after they become non-relativistic; therefore, in this example the free-streaming length would correspond to 10 million light-years or 3 Mpc today, which is around the size containing on average the mass of a large galaxy.

The above temperature 2.7 million K which gives a typical photon energy of 250 electron-volts, so this sets a typical mass scale for "warm" dark matter: particles much more massive than this, such as GeV - TeV mass WIMPs, would become non-relativistic much earlier than 1 year after the Big Bang, thus have a free-streaming length which is much smaller than a proto-galaxy and effectively negligible (thus cold dark matter). Conversely, much lighter particles (e.g. neutrinos of mass ~ few eV) have a free-streaming length much larger than a proto-galaxy (thus hot dark matter).

Read more about this topic:  Dark Matter

Famous quotes containing the words history of, history, search and/or composition:

    Three million of such stones would be needed before the work was done. Three million stones of an average weight of 5,000 pounds, every stone cut precisely to fit into its destined place in the great pyramid. From the quarries they pulled the stones across the desert to the banks of the Nile. Never in the history of the world had so great a task been performed. Their faith gave them strength, and their joy gave them song.
    William Faulkner (1897–1962)

    I believe that in the history of art and of thought there has always been at every living moment of culture a “will to renewal.” This is not the prerogative of the last decade only. All history is nothing but a succession of “crises”Mof rupture, repudiation and resistance.... When there is no “crisis,” there is stagnation, petrification and death. All thought, all art is aggressive.
    Eugène Ionesco (b. 1912)

    His life itself passes deeper in nature than the studies of the naturalist penetrate; himself a subject for the naturalist. The latter raises the moss and bark gently with his knife in search of insects; the former lays open logs to their core with his axe, and moss and bark fly far and wide. He gets his living by barking trees. Such a man has some right to fish, and I love to see nature carried out in him.
    Henry David Thoreau (1817–1862)

    Give a scientist a problem and he will probably provide a solution; historians and sociologists, by contrast, can offer only opinions. Ask a dozen chemists the composition of an organic compound such as methane, and within a short time all twelve will have come up with the same solution of CH4. Ask, however, a dozen economists or sociologists to provide policies to reduce unemployment or the level of crime and twelve widely differing opinions are likely to be offered.
    Derek Gjertsen, British scientist, author. Science and Philosophy: Past and Present, ch. 3, Penguin (1989)