Chemistry
In the Daniell cell, copper and zinc electrodes are immersed in a solution of copper(II) sulfate and zinc sulfate respectively. At the anode, zinc is oxidized per the following half reaction:
- Zn(s) → Zn2+(aq) + 2e- .
At the cathode, copper is reduced per the following reaction:
- Cu2+(aq) + 2e- → Cu(s) .
The total reaction being:
- Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s).
In the Daniell cell, which due to its simplicity is often used in classroom demonstrations, a wire and light bulb may connect the two electrodes. Electrons that are “pulled” from the zinc anode travel through the wire, providing an electrical current that illuminates the bulb. In such a cell, the sulfate ions play an important role. Having a negative charge, these anions build up around the anode to maintain a neutral charge. Conversely, at the cathode the copper(II) cations accumulate to maintain this neutral charge. These two processes cause copper solid to accumulate at the cathode and the zinc electrode to "dissolve" into the solution.
Since neither half reaction will occur independently of the other, the two half cells must be connected in a way that will allow ions to move freely between them. A porous barrier or ceramic disk may be used to separate the two solutions while allowing ion flow. When the half cells are placed in two entirely different and separate containers, a salt bridge is often used to connect the two cells. In the above wet-cell, sulfate anions move from the cathode to the anode via the salt bridge and the Zn2+ cations move in the opposite direction to maintain neutrality.
Read more about this topic: Daniell Cell
Famous quotes containing the word chemistry:
“...some sort of false logic has crept into our schools, for the people whom I have seen doing housework or cooking know nothing of botany or chemistry, and the people who know botany and chemistry do not cook or sweep. The conclusion seems to be, if one knows chemistry she must not cook or do housework.”
—Ellen Henrietta Swallow Richards (18421911)
“For me chemistry represented an indefinite cloud of future potentialities which enveloped my life to come in black volutes torn by fiery flashes, like those which had hidden Mount Sinai. Like Moses, from that cloud I expected my law, the principle of order in me, around me, and in the world.... I would watch the buds swell in spring, the mica glint in the granite, my own hands, and I would say to myself: I will understand this, too, I will understand everything.”
—Primo Levi (19191987)
“The chemistry of dissatisfaction is as the chemistry of some marvelously potent tar. In it are the building stones of explosives, stimulants, poisons, opiates, perfumes and stenches.”
—Eric Hoffer (19021983)