Impurity Incorporation
When silicon is grown by the Czochralski method, the melt is contained in a silica (quartz) crucible. During growth, the walls of the crucible dissolve into the melt and Czochralski silicon therefore contains oxygen at a typical concentration of 1018
cm−3
. Oxygen impurities can have beneficial effects. Carefully chosen annealing conditions can allow the formation of oxygen precipitates. These have the effect of trapping unwanted transition metal impurities in a process known as gettering. Additionally, oxygen impurities can improve the mechanical strength of silicon wafers by immobilising any dislocations which may be introduced during device processing. It was experimentally shown in the 1990s that the high oxygen concentration is also beneficial for radiation hardness of silicon particle detectors used in harsh radiation environment (such as CERN's LHC/S-LHC projects). Therefore, radiation detectors made of Czochralski- and Magnetic Czochralski-silicon are considered to be promising candidates for many future high-energy physics experiments. It has also been shown that presence of oxygen in silicon increases impurity trapping during post-implantation annealing processes.
However, oxygen impurities can react with boron in an illuminated environment, such as experienced by solar cells. This results in the formation of an electrically active boron–oxygen complex that detracts from cell performance. Module output drops by approximately 3% during the first few hours of light exposure.
Read more about this topic: Czochralski Process
Famous quotes containing the word impurity:
“Purity is not imposed upon us as though it were a kind of punishment, it is one of those mysterious but obvious conditions of that supernatural knowledge of ourselves in the Divine, which we speak of as faith. Impurity does not destroy this knowledge, it slays our need for it.”
—Georges Bernanos (18881948)