Cylindrical Coordinate System - Line and Volume Elements

Line and Volume Elements

See multiple integral for details of volume integration in cylindrical coordinates, and Del in cylindrical and spherical coordinates for vector calculus formulae.

In many problems involving cylindrical polar coordinates, it is useful to know the line and volume elements; these are used in integration to solve problems involving paths and volumes.

The line element is

The volume element is

The surface element in a surface of constant radius (a vertical cylinder) is

The surface element in a surface of constant azimuth (a vertical half-plane) is

The surface element in a surface of constant height (a horizontal plane) is

The del operator in this system is written as

and the Laplace operator is defined by

 \nabla^2 f
= {1 \over \rho} {\partial \over \partial \rho} \left( \rho {\partial f \over \partial \rho} \right)
+ {1 \over \rho^2} {\partial^2 f \over \partial \varphi^2}
+ {\partial^2 f \over \partial z^2 }.

Read more about this topic:  Cylindrical Coordinate System

Famous quotes containing the words line, volume and/or elements:

    The man of business ... goes on Sunday to the church with the regularity of the village blacksmith, there to renounce and abjure before his God the line of conduct which he intends to pursue with all his might during the following week.
    George Bernard Shaw (1856–1950)

    She carries a book but it is not
    the tome of the ancient wisdom,
    the pages, I imagine, are the blank pages
    of the unwritten volume of the new.
    Hilda Doolittle (1886–1961)

    The Laws of Nature are just, but terrible. There is no weak mercy in them. Cause and consequence are inseparable and inevitable. The elements have no forbearance. The fire burns, the water drowns, the air consumes, the earth buries. And perhaps it would be well for our race if the punishment of crimes against the Laws of Man were as inevitable as the punishment of crimes against the Laws of Nature—were Man as unerring in his judgments as Nature.
    Henry Wadsworth Longfellow (1807–1882)