Cyclic Permutation - Definition 3

Definition 3

A permutation is called a cyclic permutation if and only if only one of the constructing cycles will have length > 1.

Note: Every cyclic permutation of definition type 3 may be seen as an union of a cyclic permutation of definition type 2 and some fixed points.

Every cyclic permutation of definition type 2 may be seen ″as a cyclic permutation of definition type 3 with zero fixed points.

Example:


\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 2 & 7 & 6 & 5 & 8 & 1 & 3 \end{pmatrix} =
\begin{pmatrix} 1 & 4 & 6 & 8 & 3 & 7 & 2 & 5 \\ 4 & 6 & 8 & 3 & 7 & 1 & 2 & 5 \end{pmatrix} =
(146837)(2)(5)

Read more about this topic:  Cyclic Permutation

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)