Cyclic Permutation - Definition 3

Definition 3

A permutation is called a cyclic permutation if and only if only one of the constructing cycles will have length > 1.

Note: Every cyclic permutation of definition type 3 may be seen as an union of a cyclic permutation of definition type 2 and some fixed points.

Every cyclic permutation of definition type 2 may be seen ″as a cyclic permutation of definition type 3 with zero fixed points.

Example:


\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 2 & 7 & 6 & 5 & 8 & 1 & 3 \end{pmatrix} =
\begin{pmatrix} 1 & 4 & 6 & 8 & 3 & 7 & 2 & 5 \\ 4 & 6 & 8 & 3 & 7 & 1 & 2 & 5 \end{pmatrix} =
(146837)(2)(5)

Read more about this topic:  Cyclic Permutation

Famous quotes containing the word definition:

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)