Definition 1
A permutation P over a set S with k elements is called a cyclic permutation with offset t if and only if
- the elements of S may be ordered (c < c < ... < c) and the mapping of P may be written as:
- p(c ) = c for i = 1, 2, ..., k − t, and
- p(c) = c for i = k − t + 1, k − t + 2, ..., k.
Note: Every cyclic permutation of definition type 1 will be constructed with exactly gcd (k, t) disjoint cycles of equal length; see cycles and fixed points.
Cyclic permutations of definition type 1 are also called rotations, or circular shifts.
Example:
is a cyclic permutation with offset 2. It may be constructed with gcd(8, 2) = 2 cycles; see image. The used order is: c := 7, c :=6, c = i else.
Read more about this topic: Cyclic Permutation
Famous quotes containing the word definition:
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
