Definition 1
A permutation P over a set S with k elements is called a cyclic permutation with offset t if and only if
- the elements of S may be ordered (c < c < ... < c) and the mapping of P may be written as:
- p(c ) = c for i = 1, 2, ..., k − t, and
- p(c) = c for i = k − t + 1, k − t + 2, ..., k.
Note: Every cyclic permutation of definition type 1 will be constructed with exactly gcd (k, t) disjoint cycles of equal length; see cycles and fixed points.
Cyclic permutations of definition type 1 are also called rotations, or circular shifts.
Example:
is a cyclic permutation with offset 2. It may be constructed with gcd(8, 2) = 2 cycles; see image. The used order is: c := 7, c :=6, c = i else.
Read more about this topic: Cyclic Permutation
Famous quotes containing the word definition:
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)