Formal Logic
The example in the previous section used unformalized, natural-language reasoning. Curry's paradox also occurs in formal logic. In this context, it shows that if we assume there is a formal sentence (X → Y), where X itself is equivalent to (X → Y), then we can prove Y with a formal proof. One example of such a formal proof is as follows.
1. X → X
- rule of assumption, also called restatement of premise or of hypothesis
2. X → (X → Y)
- substitute right side of 1, since X is equivalent to X → Y by assumption
3. X → Y
- from 2 by contraction
4. X
- substitute 3, since X = X → Y
5. Y
- from 4 and 3 by modus ponens
Therefore, if Y is an unprovable statement in a formal system, there is no statement X in that system such that X is equivalent to the implication (X → Y). By contrast, the previous section shows that in natural (unformalized) language, for every natural language statement Y there is a natural language statement Z such that Z is equivalent to (Z → Y) in natural language. Namely, Z is "If this sentence is true then Y".
In specific cases where the classification of Y is already known, few steps are needed to reveal the contradiction. For example, when Y is "Germany borders China," it is known that Y is false.
1. X = X → Y
- assumption
2. X = X → false
- substitute known value of Y
3. X = ¬X ∨ false
- implication
4. X = ¬X
- identity
Read more about this topic: Curry's Paradox
Famous quotes containing the words formal and/or logic:
“The conviction that the best way to prepare children for a harsh, rapidly changing world is to introduce formal instruction at an early age is wrong. There is simply no evidence to support it, and considerable evidence against it. Starting children early academically has not worked in the past and is not working now.”
—David Elkind (20th century)
“Somebody who should have been born
is gone.
Yes, woman, such logic will lead
to loss without death. Or say what you meant,
you coward . . . this baby that I bleed.”
—Anne Sexton (19281974)