Curry's Paradox - Formal Logic

Formal Logic

The example in the previous section used unformalized, natural-language reasoning. Curry's paradox also occurs in formal logic. In this context, it shows that if we assume there is a formal sentence (X → Y), where X itself is equivalent to (X → Y), then we can prove Y with a formal proof. One example of such a formal proof is as follows.

1. X → X

rule of assumption, also called restatement of premise or of hypothesis

2. X → (X → Y)

substitute right side of 1, since X is equivalent to X → Y by assumption

3. X → Y

from 2 by contraction

4. X

substitute 3, since X = X → Y

5. Y

from 4 and 3 by modus ponens

Therefore, if Y is an unprovable statement in a formal system, there is no statement X in that system such that X is equivalent to the implication (X → Y). By contrast, the previous section shows that in natural (unformalized) language, for every natural language statement Y there is a natural language statement Z such that Z is equivalent to (Z → Y) in natural language. Namely, Z is "If this sentence is true then Y".

In specific cases where the classification of Y is already known, few steps are needed to reveal the contradiction. For example, when Y is "Germany borders China," it is known that Y is false.

1. X = X → Y

assumption

2. X = X → false

substitute known value of Y

3. X = ¬X ∨ false

implication

4. X = ¬X

identity

Read more about this topic:  Curry's Paradox

Famous quotes containing the words formal and/or logic:

    This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. It’s no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.
    Leontine Young (20th century)

    The usefulness of madmen is famous: they demonstrate society’s logic flagrantly carried out down to its last scrimshaw scrap.
    Cynthia Ozick (b. 1928)