Formal Logic
The example in the previous section used unformalized, natural-language reasoning. Curry's paradox also occurs in formal logic. In this context, it shows that if we assume there is a formal sentence (X → Y), where X itself is equivalent to (X → Y), then we can prove Y with a formal proof. One example of such a formal proof is as follows.
1. X → X
- rule of assumption, also called restatement of premise or of hypothesis
2. X → (X → Y)
- substitute right side of 1, since X is equivalent to X → Y by assumption
3. X → Y
- from 2 by contraction
4. X
- substitute 3, since X = X → Y
5. Y
- from 4 and 3 by modus ponens
Therefore, if Y is an unprovable statement in a formal system, there is no statement X in that system such that X is equivalent to the implication (X → Y). By contrast, the previous section shows that in natural (unformalized) language, for every natural language statement Y there is a natural language statement Z such that Z is equivalent to (Z → Y) in natural language. Namely, Z is "If this sentence is true then Y".
In specific cases where the classification of Y is already known, few steps are needed to reveal the contradiction. For example, when Y is "Germany borders China," it is known that Y is false.
1. X = X → Y
- assumption
2. X = X → false
- substitute known value of Y
3. X = ¬X ∨ false
- implication
4. X = ¬X
- identity
Read more about this topic: Curry's Paradox
Famous quotes containing the words formal and/or logic:
“Two clergymen disputing whether ordination would be valid without the imposition of both hands, the more formal one said, Do you think the Holy Dove could fly down with only one wing?”
—Horace Walpole (17171797)
“Histories make men wise; poets witty; the mathematics subtle; natural philosophy deep; moral grave; logic and rhetoric able to contend.”
—Francis Bacon (15611626)