Definition
The curl of a vector field F, denoted by curl F or ∇ × F, at a point is defined in terms of its projection onto various lines through the point. If is any unit vector, the projection of the curl of F onto is defined to be the limiting value of a closed line integral in a plane orthogonal to as the path used in the integral becomes infinitesimally close to the point, divided by the area enclosed.
As such, the curl operator maps C1 functions from R3 to R3 to C0 functions from R3 to R3.
Implicitly, curl is defined by:
where is a line integral along the boundary of the area in question, and |A| is the magnitude of the area. If is an outward pointing in-plane normal, whereas is the unit vector perpendicular to the plane (see caption at right), then the orientation of C is chosen so that a tangent vector to C is positively oriented if and only if forms a positively oriented basis for R3 (right-hand rule).
The above formula means that the curl of a vector field is defined as the infinitesimal area density of the circulation of that field. To this definition fit naturally
- the Kelvin-Stokes theorem, as a global formula corresponding to the definition, and
- the following "easy to memorize" definition of the curl in curvilinear orthogonal coordinates, e.g. in cartesian coordinates, spherical, cylindrical, or even elliptical or parabolical coordinates:
If (x1, x2, x3) are the Cartesian coordinates and (u1,u2,u3) are the orthogonal coordinates, then
is the length of the coordinate vector corresponding to ui. The remaining two components of curl result from cyclic permutation of indices: 3,1,2 → 1,2,3 → 2,3,1.
Read more about this topic: Curl (mathematics)
Famous quotes containing the word definition:
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)