The cubic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 3-space, made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron.
It is a self-dual tessellation with Schläfli symbol {4,3,4}. It is part of a multidimensional family of hypercube honeycombs, with Schläfli symbols of the form {4,3,...,3,4}, starting with the square tiling, {4,4} in the plane.
It is one of 28 uniform honeycombs using convex uniform polyhedral cells.
Read more about Cubic Honeycomb: Uniform Colorings, Related Polytopes and Tesellations
Famous quotes containing the word cubic:
“Mining today is an affair of mathematics, of finance, of the latest in engineering skill. Cautious men behind polished desks in San Francisco figure out in advance the amount of metal to a cubic yard, the number of yards washed a day, the cost of each operation. They have no need of grubstakes.”
—Merle Colby, U.S. public relief program (1935-1943)