Coloring and Independent Sets
According to Brooks' theorem every cubic graph other than the complete graph K4 can be colored with at most three colors. Therefore, every cubic graph other than K4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.
According to Vizing's theorem every cubic graph needs either three or four colors for an edge coloring. A 3-edge-coloring is known as a Tait coloring, and forms a partition of the edges of the graph into three perfect matchings. By König's line coloring theorem every bicubic graph has a Tait coloring.
The bridgeless cubic graphs that do not have a Tait coloring are known as snarks. They include the Petersen graph, Tietze's graph, the Blanuša snarks, the flower snark, the double-star snark, the Szekeres snark and the Watkins snark. There is an infinite number of distinct snarks.
Read more about this topic: Cubic Graph
Famous quotes containing the words independent and/or sets:
“The real, then, is that which, sooner or later, information and reasoning would finally result in, and which is therefore independent of the vagaries of me and you. Thus, the very origin of the conception of reality shows that this conception essentially involves the notion of a COMMUNITY, without definite limits, and capable of a definite increase of knowledge.”
—Charles Sanders Peirce (18391914)
“The vain man does not wish so much to be prominent as to feel himself prominent; he therefore disdains none of the expedients for self-deception and self-outwitting. It is not the opinion of others that he sets his heart on, but his opinion of their opinion.”
—Friedrich Nietzsche (18441900)