Crystal Optics - Anisotropic Media

Anisotropic Media

In an anisotropic medium, such as a crystal, the polarisation field P is not necessarily aligned with the electric field of the light E. In a physical picture, this can be thought of as the dipoles induced in the medium by the electric field having certain preferred directions, related to the physical structure of the crystal. This can be written as:

Here χ is not a number as before but a tensor of rank 2, the electric susceptibility tensor. In terms of components in 3 dimensions:

\begin{pmatrix} P_x \\ P_y \\ P_z \end{pmatrix} = \varepsilon_0
\begin{pmatrix} \chi_{xx} & \chi_{xy} & \chi_{xz} \\ \chi_{yx} & \chi_{yy} & \chi_{yz} \\ \chi_{zx} & \chi_{zy} & \chi_{zz} \end{pmatrix}
\begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix}

or using the summation convention:

Since χ is a tensor, P is not necessarily colinear with E.

From thermodynamic arguments it can be shown that χij = χji, i.e. the χ tensor is symmetric. In accordance with the spectral theorem, it is thus possible to diagonalise the tensor by choosing the appropriate set of coordinate axes, zeroing all components of the tensor except χxx, χyy and χzz. This gives the set of relations:

The directions x, y and z are in this case known as the principal axes of the medium. Note that these axes will be orthogonal if all entries in the χ tensor are real, corresponding to a case in which the refractive index is real in all directions.

It follows that D and E are also related by a tensor:

Here ε is known as the relative permittivity tensor or dielectric tensor. Consequently, the refractive index of the medium must also be a tensor. Consider a light wave propagating along the z principal axis polarised such the electric field of the wave is parallel to the x-axis. The wave experiences a susceptibility χxx and a permittivity εxx. The refractive index is thus:

For a wave polarised in the y direction:

Thus these waves will see two different refractive indices and travel at different speeds. This phenomenon is known as birefringence and occurs in some common crystals such as calcite and quartz.

If χxx = χyy ≠ χzz, the crystal is known as uniaxial. (See Optic axis of a crystal.) If χxx ≠ χyy and χxx ≠ χzz the crystal is called biaxial. A uniaxial crystal exhibits two refractive indices, an "ordinary" index (no) for light polarised in the x or y directions, and an "extraordinary" index (ne) for polarisation in the z direction. A uniaxial crystal is "positive" if ne > no and "negative" if ne < no. Light polarised at some angle to the axes will experience a different phase velocity for different polarization components, and cannot be described by a single index of refraction. This is often depicted as an index ellipsoid.

Read more about this topic:  Crystal Optics

Famous quotes containing the word media:

    One can describe a landscape in many different words and sentences, but one would not normally cut up a picture of a landscape and rearrange it in different patterns in order to describe it in different ways. Because a photograph is not composed of discrete units strung out in a linear row of meaningful pieces, we do not understand it by looking at one element after another in a set sequence. The photograph is understood in one act of seeing; it is perceived in a gestalt.
    Joshua Meyrowitz, U.S. educator, media critic. “The Blurring of Public and Private Behaviors,” No Sense of Place: The Impact of Electronic Media on Social Behavior, Oxford University Press (1985)