Nucleation
Nucleation can be either homogeneous, without the influence of foreign particles, or heterogeneous, with the influence of foreign particles. Generally, heterogeneous nucleation takes place more quickly since the foreign particles act as a scaffold for the crystal to grow on, thus eliminating the necessity of creating a new surface and the incipient surface energy requirements.
Heterogeneous nucleation can take place by several methods. Some of the most typical are small inclusions, or cuts, in the container the crystal is being grown on. This includes scratches on the sides and bottom of glassware. A common practice in crystal growing is to add a foreign substance, such as a string or a rock, to the solution, thereby providing nucleation sites for facilitating crystal growth and reducing the time to fully crystallize.
The number of nucleating sites can also be controlled in this manner. If a brand-new piece of glassware or a plastic container is used, crystals may not form because the container surface is too smooth to allow heterogeneous nucleation. On the other hand, a badly scratched container will result in many lines of small crystals. To achieve a moderate number of medium sized crystals, a container which has a few scratches works best. Likewise, adding small previously made crystals, or seed crystals, to a crystal growing project will provide nucleating sites to the solution. The addition of only one seed crystal should result in a larger single crystal.
Some important features during growth are the arrangement, the origin of growth, the interface form (important for the driving force), and the final size. When origin of growth is only in one direction for all the crystals, it can result in the material becoming very anisotropic (different properties in different directions). The interface form determines the additional free energy for each volume of crystal growth.
Lattice arrangement in metals often takes the structure of body centered cubic, face centered cubic, or hexagonal close packed. The final size of the crystal is important for mechanical properties of materials. (For example, in metals it is widely acknowledged that large crystals can stretch further due to the longer deformation path and thus lower internal stresses.).
Read more about this topic: Crystal Growth