Discontinuity
The conditions of a homogeneous environment are often approximated to but rarely ever realized. Crystal growth always involves some form of transport of matter or heat (or both). And homogeneous conditions for the transport process can only exist for spherical, cylindrical, or infinite plane surfaces. A polyhedral crystal cannot grow (remaining polyhedral) with uniform levels of supersaturation (or supercooling) over its faces. In general, the supersaturation is greatest at its corners. This refutes the assumption that the growth rate is a function of orientation and local supersaturation.
Thus, the crystal face must grow as a whole. The growth rate of the entire face is determined by the driving force (level of supersaturation) at the point of emergence of the predominant point of growth (e.g. a dislocation, a foreign particle acting as catalyst, or crystal twin). The defect-free habit face can thus resist a finite level of supersaturation without any growth at all.
Gibbs himself was the first to point out that in the growth of a perfect crystal, the first derivative of the free energy with respect to mass becomes periodically undefinable — at each time that an additional layer on the crystal face is completed. There is discontinuity in the chemical potential at each such point.
In one sense, the crystal can then be in equilibrium with environments having a range of chemical potentials. In another sense, it is not in equilibrium. There are available states of lower free energy. But any free energy barrier must be passed by a fluctuation, or nucleation process, in order to access it. The fundamental thermodynamic effect of a screw dislocation is to eliminate this discontinuity in the chemical potential, by making it impossible to ever complete a single crystal face.
Read more about this topic: Crystal Growth