Cross Product As An Exterior Product
The cross product can be viewed in terms of the exterior product. This view allows for a natural geometric interpretation of the cross product. In exterior algebra the exterior product (or wedge product) of two vectors is a bivector. A bivector is an oriented plane element, in much the same way that a vector is an oriented line element. Given two vectors a and b, one can view the bivector a ∧ b as the oriented parallelogram spanned by a and b. The cross product is then obtained by taking the Hodge dual of the bivector a ∧ b, mapping 2-vectors to vectors:
This can be thought of as the oriented multi-dimensional element "perpendicular" to the bivector. Only in three dimensions is the result an oriented line element – a vector – whereas, for example, in 4 dimensions the Hodge dual of a bivector is two-dimensional – another oriented plane element. So, only in three dimensions is the cross product of a and b the vector dual to the bivector a ∧ b: it is perpendicular to the bivector, with orientation dependent on the coordinate system's handedness, and has the same magnitude relative to the unit normal vector as a ∧ b has relative to the unit bivector; precisely the properties described above.
Read more about this topic: Cross Product
Famous quotes containing the words cross, product and/or exterior:
“To be where little cable cars climb halfway to the stars.”
—Douglass Cross (b. 1920)
“Humour is the describing the ludicrous as it is in itself; wit is the exposing it, by comparing or contrasting it with something else. Humour is, as it were, the growth of nature and accident; wit is the product of art and fancy.”
—William Hazlitt (17781830)
“The competent leader of men cares little for the niceties of other peoples characters: he cares mucheverythingfor the exterior uses to which they may be put.... These are men to be moved. How should he move them? He supplies the power; others simply the materials on which that power operates.”
—Woodrow Wilson (18561924)