In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced (Coxeter 1934) as abstractions of reflection groups, and finite Coxeter groups were classified in 1935 (Coxeter 1935).
Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional Kac–Moody algebras.
Standard references include (Humphreys 1990) and (Davis 2007).
Read more about Coxeter Group: Definition, An Example, Connection With Reflection Groups, Affine Coxeter Groups, Hyperbolic Coxeter Groups, Partial Orders, Homology
Famous quotes containing the word group:
“Remember that the peer group is important to young adolescents, and theres nothing wrong with that. Parents are often just as important, however. Dont give up on the idea that you can make a difference.”
—The Lions Clubs International and the Quest Nation. The Surprising Years, I, ch.5 (1985)