Properties
Let G be a covering group of H. The kernel K of the covering homomorphism is just the fiber over the identity in H and is a discrete normal subgroup of G. The kernel K is closed in G if and only if G is Hausdorff (and if and only if H is Hausdorff). Going in the other direction, if G is any topological group and K is a discrete normal subgroup of G then the quotient map p : G → G/K is a covering homomorphism.
If G is connected then K, being a discrete normal subgroup, necessarily lies in the center of G and is therefore abelian. In this case, the center of H = G/K is given by
As with all covering spaces, the fundamental group of G injects into the fundamental group of H. If G is path-connected then the quotient group is isomorphic to K. Since the fundamental group of a topological group is always abelian, every covering group is a normal covering space. The group K acts simply transitively on the fibers (which are just left cosets) by right multiplication. The group G is then a principal K-bundle over H.
If G is a covering group of H then the groups G and H are locally isomorphic. Moreover, given any two connected locally isomorphic groups H1 and H2, there exists a topological group G with discrete normal subgroups K1 and K2 such that H1 is isomorphic to G/K1 and H2 is isomorphic to G/K2.
Read more about this topic: Covering Group
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)