Informal Usage
In the field of physics, the adjective covariant is often used informally as a synonym for invariant. For example, the Schrödinger equation does not keep its written form under the coordinate transformations of special relativity. Thus, a physicist might say that the Schrödinger equation is not covariant. In contrast, the Klein–Gordon equation and the Dirac equation do keep their written form under these coordinate transformations. Thus, a physicist might say that these equations are covariant.
Despite this usage of "covariant", it is more accurate to say that the Klein–Gordon and Dirac equations are invariant, and that the Schrödinger equation is not invariant. Additionally, to remove ambiguity, the transformation by which the invariance is evaluated should be indicated.
Because the components of vectors are contravariant and those of covectors are covariant, the vectors themselves are often referred to as being contravariant and the covectors as covariant. This usage may be misleading, however, since vectors push forward – are covariant under diffeomorphism – and covectors pull back – are contravariant under diffeomorphism. See Einstein notation for details.
Read more about this topic: Covariance And Contravariance Of Vectors
Famous quotes containing the words informal and/or usage:
“We are now a nation of people in daily contact with strangers. Thanks to mass transportation, school administrators and teachers often live many miles from the neighborhood schoolhouse. They are no longer in daily informal contact with parents, ministers, and other institution leaders . . . [and are] no longer a natural extension of parental authority.”
—James P. Comer (20th century)
“Girls who put out are tramps. Girls who dont are ladies. This is, however, a rather archaic usage of the word. Should one of you boys happen upon a girl who doesnt put out, do not jump to the conclusion that you have found a lady. What you have probably found is a lesbian.”
—Fran Lebowitz (b. 1951)