Covariance and Contravariance of Vectors - Definition

Definition

The general formulation of covariance and contravariance refers to how the components of a coordinate vector transform under a change of basis (passive transformation). Thus let V be a vector space of dimension n over the field of scalars S, and let each of f = (X1,...,Xn) and f' = (Y1,...,Yn) be a basis of V. Also, let the change of basis from f to f′ be given by

(1)

for some invertible n×n matrix A with entries . Here, each vector Yj of the f' basis is a linear combination of the vectors Xi of the f basis, so that

Read more about this topic:  Covariance And Contravariance Of Vectors

Famous quotes containing the word definition:

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)