The Pullback of A Smooth Map
Just as every differentiable map f : M → N between manifolds induces a linear map (called the pushforward or derivative) between the tangent spaces
every such map induces a linear map (called the pullback) between the cotangent spaces, only this time in the reverse direction:
The pullback is naturally defined as the dual (or transpose) of the pushforward. Unraveling the definition, this means the following:
where θ ∈ Tf(x)*N and Xx ∈ TxM. Note carefully where everything lives.
If we define tangent covectors in terms of equivalence classes of smooth maps vanishing at a point then the definition of the pullback is even more straightforward. Let g be a smooth function on N vanishing at f(x). Then the pullback of the covector determined by g (denoted dg) is given by
That is, it is the equivalence class of functions on M vanishing at x determined by g o f.
Read more about this topic: Cotangent Space
Famous quotes containing the words smooth and/or map:
“He stands in warm water
Soap all over the smooth of his thigh and stomach
Gary dont soap my hair!
Mhis eye-sting fear”
—Gary Snyder (b. 1930)
“Unless, governor, teacher inspector, visitor,
This map becomes their window and these windows
That open on their lives like crouching tombs
Break, O break open,”
—Stephen Spender (19091995)