Cotangent Space - The Pullback of A Smooth Map

The Pullback of A Smooth Map

Just as every differentiable map f : MN between manifolds induces a linear map (called the pushforward or derivative) between the tangent spaces

every such map induces a linear map (called the pullback) between the cotangent spaces, only this time in the reverse direction:

The pullback is naturally defined as the dual (or transpose) of the pushforward. Unraveling the definition, this means the following:

where θ ∈ Tf(x)*N and XxTxM. Note carefully where everything lives.

If we define tangent covectors in terms of equivalence classes of smooth maps vanishing at a point then the definition of the pullback is even more straightforward. Let g be a smooth function on N vanishing at f(x). Then the pullback of the covector determined by g (denoted dg) is given by

That is, it is the equivalence class of functions on M vanishing at x determined by g o f.

Read more about this topic:  Cotangent Space

Famous quotes containing the words smooth and/or map:

    And there’s a score of duchesses, surpassing womankind,
    Or who have found a painter to make them so for pay
    And smooth out stain and blemish with the elegance of his mind:
    I knew a phoenix in my youth, so let them have their day.
    William Butler Yeats (1865–1939)

    A map of the world that does not include Utopia is not worth even glancing at, for it leaves out the one country at which Humanity is always landing.
    Oscar Wilde (1854–1900)