The Differential of A Function
Let M be a smooth manifold and let f ∈ C∞(M) be a smooth function. The differential of f at a point x is the map
- dfx(Xx) = Xx(f)
where Xx is a tangent vector at x, thought of as a derivation. That is is the Lie derivative of f in the direction X, and one has df(X)=X(f). Equivalently, we can think of tangent vectors as tangents to curves, and write
- dfx(γ′(0)) = (f o γ)′(0)
In either case, dfx is a linear map on TxM and hence it is a tangent covector at x.
We can then define the differential map d : C∞(M) → Tx*M at a point x as the map which sends f to dfx. Properties of the differential map include:
- d is a linear map: d(af + bg) = a df + b dg for constants a and b,
- d(fg)x = f(x)dgx + g(x)dfx,
The differential map provides the link between the two alternate definitions of the cotangent space given above. Given a function f ∈ Ix (a smooth function vanishing at x) we can form the linear functional dfx as above. Since the map d restricts to 0 on Ix2 (the reader should verify this), d descends to a map from Ix / Ix2 to the dual of the tangent space, (TxM)*. One can show that this map is an isomorphism, establishing the equivalence of the two definitions.
Read more about this topic: Cotangent Space
Famous quotes containing the words differential and/or function:
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)
“The mothers and fathers attitudes toward the child correspond to the childs own needs.... Mother has the function of making him secure in life, father has the function of teaching him, guiding him to cope with those problems with which the particular society the child has been born into confronts him.”
—Erich Fromm (19001980)