History
Einstein included the cosmological constant as a term in his field equations for general relativity because he was dissatisfied that otherwise his equations did not allow, apparently, for a static universe: gravity would cause a universe which was initially at dynamic equilibrium to contract. To counteract this possibility, Einstein added the cosmological constant. However, soon after Einstein developed his static theory, observations by Edwin Hubble indicated that the universe appears to be expanding; this was consistent with a cosmological solution to the original general-relativity equations that had been found by the mathematician Friedmann. Einstein later referred to his failure to predict the expansion of the universe from theory, before it was proven by observation of the cosmological red shift, as the "biggest blunder" of his life.
In fact adding the cosmological constant to Einstein's equations does not lead to a static universe at equilibrium because the equilibrium is unstable: if the universe expands slightly, then the expansion releases vacuum energy, which causes yet more expansion. Likewise, a universe which contracts slightly will continue contracting.
However, the cosmological constant remained a subject of theoretical and empirical interest. Empirically, the onslaught of cosmological data in the past decades strongly suggests that our universe has a positive cosmological constant. The explanation of this small but positive value is an outstanding theoretical challenge (see the section below).
Finally, it should be noted that some early generalizations of Einstein's gravitational theory, known as classical unified field theories, either introduced a cosmological constant on theoretical grounds or found that it arose naturally from the mathematics. For example, Sir Arthur Stanley Eddington claimed that the cosmological constant version of the vacuum field equation expressed the "epistemological" property that the universe is "self-gauging", and Erwin Schrödinger's pure-affine theory using a simple variational principle produced the field equation with a cosmological term.
Read more about this topic: Cosmological Constant
Famous quotes containing the word history:
“No one is ahead of his time, it is only that the particular variety of creating his time is the one that his contemporaries who are also creating their own time refuse to accept.... For a very long time everybody refuses and then almost without a pause almost everybody accepts. In the history of the refused in the arts and literature the rapidity of the change is always startling.”
—Gertrude Stein (18741946)
“It takes a great deal of history to produce a little literature.”
—Henry James (18431916)
“All history and art are against us, but we still expect happiness in love.”
—Mason Cooley (b. 1927)