Cosmic Microwave Background Radiation - Microwave Background Observations

Microwave Background Observations

Subsequent to the discovery of the CMB, hundreds of cosmic microwave background experiments have been conducted to measure and characterize the signatures of the radiation. The most famous experiment is probably the NASA Cosmic Background Explorer (COBE) satellite that orbited in 1989–1996 and which detected and quantified the large scale anisotropies at the limit of its detection capabilities. Inspired by the initial COBE results of an extremely isotropic and homogeneous background, a series of ground- and balloon-based experiments quantified CMB anisotropies on smaller angular scales over the next decade. The primary goal of these experiments was to measure the angular scale of the first acoustic peak, for which COBE did not have sufficient resolution. These measurements were able to rule out cosmic strings as the leading theory of cosmic structure formation, and suggested cosmic inflation was the right theory. During the 1990s, the first peak was measured with increasing sensitivity and by 2000 the BOOMERanG experiment reported that the highest power fluctuations occur at scales of approximately one degree. Together with other cosmological data, these results implied that the geometry of the Universe is flat. A number of ground-based interferometers provided measurements of the fluctuations with higher accuracy over the next three years, including the Very Small Array, Degree Angular Scale Interferometer (DASI), and the Cosmic Background Imager (CBI). DASI made the first detection of the polarization of the CMB and the CBI provided the first E-mode polarization spectrum with compelling evidence that it is out of phase with the T-mode spectrum.

In June 2001, NASA launched a second CMB space mission, WMAP, to make much more precise measurements of the great scale anisotropies over the full sky. WMAP used symmetric, rapid-multi-modulated scanning, rapid switching radiometers to minimize non-sky signal noise. The first results from this mission, disclosed in 2003, were detailed measurements of the angular power spectrum to below degree scales, tightly constraining various cosmological parameters. The results are broadly consistent with those expected from cosmic inflation as well as various other competing theories, and are available in detail at NASA's data bank for Cosmic Microwave Background (CMB) (see links below). Although WMAP provided very accurate measurements of the great angular-scale fluctuations in the CMB (structures about as broad in the sky as the moon), it did not have the angular resolution to measure the smaller scale fluctuations which had been observed by former ground-based interferometers.

A third space mission, the ESA (European Space Agency) Planck Surveyor, launched in May, 2009 and is currently performing an even more detailed investigation. Planck employs both HEMT radiometers as well as bolometer technology and will measure the CMB on smaller scales than WMAP. Its detectors got a trial run at the Antarctic Viper telescope as ACBAR (Arcminute Cosmology Bolometer Array Receiver) experiment—which has produced the most precise measurements at small angular scales to date—and at the Archeops balloon telescope.

Additional ground-based instruments such as the South Pole Telescope in Antarctica and the proposed Clover Project, Atacama Cosmology Telescope and the QUIET telescope in Chile will provide additional data not available from satellite observations, possibly including the B-mode polarization.

Read more about this topic:  Cosmic Microwave Background Radiation

Famous quotes containing the words microwave, background and/or observations:

    The New Age? It’s just the old age stuck in a microwave oven for fifteen seconds.
    James Randi (b. 1928)

    ... every experience in life enriches one’s background and should teach valuable lessons.
    Mary Barnett Gilson (1877–?)

    The truth is, the Science of Nature has been already too long made only a work of the brain and the fancy: It is now high time that it should return to the plainness and soundness of observations on material and obvious things.
    Robert Hooke (1635–1703)