From The Solar Nebula To Earth
The arrows in the adjacent diagram show one possible path from a collected interplanetary dust particle back to the early stages of the solar nebula.
We can follow the trail to the right in the diagram to the IDPs that contain the most volatile and primitive elements. The trail takes us first from interplanetary dust particles to chondritic interplanetary dust particles. Planetary scientists classify chondritic IDPs in terms of their diminishing degree of oxidation so that they fall into three major groups: the carbonaneous, the ordinary, and the enstatite chondrites. As the name implies, the carbonaceous chondrites are rich in carbon, and many have anomalies in the isotopic abundances of H, C, N, and O (Jessberger, 2000). From the carbonaceous chondrites, we follow the trail to the most primitive materials. They are almost completely oxidized and contain the most low condensation temperature elements ("volatile" elements) and the largest amount of organic compounds. Therefore, dust particles with these elements are thought to be formed in the early life of our solar system. Why? The volatile elements have never seen temperatures above about 500 K, therefore, one can conclude that the IDP grain "matrix" consists of some very primitive solar system material. Such a scenario is true in the case of comet dust. The provenance of the small fraction that is stardust (see above) is quite different; these refractory interstellar minerals thermally condense within stars, become a small component of interstellar matter, and therefore remain in the presolar planetary disk.
We can learn more about these particles' origin, by examining their surfaces. If we examine, in the laboratory, dust particles' density of solar flare tracks, their amorphous rims, and the spallogenic isotopes from cosmic rays (Flynn, 1996), then we have good clues for how long a particle has been traveling in space. Nuclear damage tracks are caused by the ion flux from solar flares. Solar wind ions impacting on the particle's surface produce amorphous radiation damaged rims on the particle's surface. And spallogenic nuclei are produced by galactic and solar cosmic rays. A dust particle that originates in the Kuiper Belt at 40 AU would have many more times the density of tracks, thicker amorphous rims and higher integrated doses than a dust particle originating in the main-asteroid belt.
Based on recent computer model studies, the complex organic molecules necessary for life may have formed in the protoplanetary disk of dust grains surrounding the Sun before the formation of the Earth. According to the computer studies, this same process may also occur around other stars that acquire planets. (Also see Extraterrestrial organic molecules.)
In September 2012, NASA scientists reported that polycyclic aromatic hydrocarbons (PAHs), subjected to interstellar medium (ISM) conditions, are transformed, through hydrogenation, oxygenation and hydroxylation, to more complex organics - "a step along the path toward amino acids and nucleotides, the raw materials of proteins and DNA, respectively". Further, as a result of these transformations, the PAHs lose their spectroscopic signature which could be one of the reasons "for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks."
Read more about this topic: Cosmic Dust
Famous quotes containing the words from the, solar and/or earth:
“How did they meet? By chance, like everybody.... Where did they come from? From the nearest place. Where were they going? Do we know where we are going?”
—Denis Diderot (17131784)
“Our civilization has decided ... that determining the guilt or innocence of men is a thing too important to be trusted to trained men.... When it wants a library catalogued, or the solar system discovered, or any trifle of that kind, it uses up its specialists. But when it wishes anything done which is really serious, it collects twelve of the ordinary men standing round. The same thing was done, if I remember right, by the Founder of Christianity.”
—Gilbert Keith Chesterton (18741936)
“As a man-of-war that sails through the sea, so this earth that sails through the air. We mortals are all on board a fast-sailing, never-sinking world-frigate, of which God was the shipwright; and she is but one craft in a Milky-Way fleet, of which God is the Lord High Admiral.”
—Herman Melville (18191891)