General Pattern
For any two correlated events A and B, the following relationships are possible:
- A causes B;
- B causes A;
- A and B are consequences of a common cause, but do not cause each other;
- There is no connection between A and B, the correlation is coincidental.
Less clear-cut correlations are also possible. For example, causality is not necessarily one-way; in a predator-prey relationship, predator numbers affect prey, but prey numbers, i.e. food supply, also affect predators.
The cum hoc ergo propter hoc logical fallacy can be expressed as follows:
- A occurs in correlation with B.
- Therefore, A causes B.
In this type of logical fallacy, one makes a premature conclusion about causality after observing only a correlation between two or more factors. Generally, if one factor (A) is observed to only be correlated with another factor (B), it is sometimes taken for granted that A is causing B, even when no evidence supports it. This is a logical fallacy because there are at least five possibilities:
- A may be the cause of B.
- B may be the cause of A.
- some unknown third factor C may actually be the cause of both A and B.
- there may be a combination of the above three relationships. For example, B may be the cause of A at the same time as A is the cause of B (contradicting that the only relationship between A and B is that A causes B). This describes a self-reinforcing system.
- the "relationship" is a coincidence or so complex or indirect that it is more effectively called a coincidence (i.e. two events occurring at the same time that have no direct relationship to each other besides the fact that they are occurring at the same time). A larger sample size helps to reduce the chance of a coincidence, unless there is a systematic error in the experiment.
In other words, there can be no conclusion made regarding the existence or the direction of a cause and effect relationship only from the fact that A and B are correlated. Determining whether there is an actual cause and effect relationship requires further investigation, even when the relationship between A and B is statistically significant, a large effect size is observed, or a large part of the variance is explained.
Read more about this topic: Correlation Does Not Imply Causation
Famous quotes containing the words general and/or pattern:
“When General Motors has to go to the bathroom ten times a day, the whole countrys ready to let go. You heard of that market crash in 29? I predicted that.... I was nursing a director of General Motors. Kidney ailment, they said; nerves, I said. Then I asked myself, Whats General Motors got to be nervous about? Overproduction, I says. Collapse.”
—John Michael Hayes (b. 1919)
“Although the pattern prevailed,
The breaks were everywhere. That she could think
Of no thread capable of the necessary
Sew-work.”
—Gwendolyn Brooks (b. 1917)