Bivariate Normal Distribution
If a pair (X, Y) of random variables follows a bivariate normal distribution, the conditional mean E(X|Y) is a linear function of Y, and the conditional mean E(Y|X) is a linear function of X. The correlation coefficient r between X and Y, along with the marginal means and variances of X and Y, determines this linear relationship:
where E(X) and E(Y) are the expected values of X and Y, respectively, and σx and σy are the standard deviations of X and Y, respectively.
Read more about this topic: Correlation And Dependence
Famous quotes containing the words normal and/or distribution:
“To try to control a nine-month-olds clinginess by forcing him away is a mistake, because it counteracts a normal part of the childs development. To think that the child is clinging to you because he is spoiled is nonsense. Clinginess is not a discipline issue, at least not in the sense of correcting a wrongdoing.”
—Lawrence Balter (20th century)
“Classical and romantic: private language of a family quarrel, a dead dispute over the distribution of emphasis between man and nature.”
—Cyril Connolly (19031974)