Coronal seismology is a technique of studying the plasma of the Sun's corona with the use of magnetohydrodynamic (MHD) waves and oscillations. Magnetohydrodynamics studies the dynamics of electrically conducting fluids - in this case the fluid is the coronal plasma. Observed properties of the waves (e.g. period, wavelength, amplitude, temporal and spatial signatures, characteristic scenarios of the wave evolution), combined with a theoretical modelling of the wave phenomena (dispersion relations, evolutionary equations, etc.), reveal physical parameters of the corona which are not open to direct observations, such as the coronal magnetic field strength and Alfvén velocity and coronal dissipative coefficients. Originally, the method of MHD coronal seismology was suggested by Y. Uchida in 1970 for global seismology (standing waves) and B. Roberts et al. in 1984 for local seismology (propagating waves), but was not practically applied until the late 90s due to a lack of necessary observational resolution. Philosophically, coronal seismology is similar to the Earth's seismology, helioseismology, and MHD spectroscopy of laboratory plasma devices. In all these approaches, waves of various kind are used to probe a medium.
The theoretical foundation of coronal seismology is the dispersion relation of MHD modes of a plasma cylinder: a plasma structure which is nonuniform in the transverse direction and extended along the magnetic field. This model works well for the description of a number of plasma structures observed in the solar corona: e.g. coronal loops, prominence fibrils, plumes, various filaments. Such a structure acts as a waveguide of MHD waves.
This discussion is adapted from Valery M. Nakariakov and Erwin Verwichte, "Coronal Waves and Oscillations", Living Rev. Solar Phys. 2, (2005), (cited on November 26, 2009).
Read more about Coronal Seismology: Types of Magnetohydrodynamic Waves, Observations, Conclusions