Coriolis Effect - Causes

Causes

The Coriolis effect exists only when one uses a rotating reference frame. In the rotating frame it behaves exactly like a real force (that is to say, it causes acceleration and has real effects). However, Coriolis force is a consequence of inertia, and is not attributable to an identifiable originating body, as is the case for electromagnetic or nuclear forces, for example. From an analytical viewpoint, to use Newton's second law in a rotating system, Coriolis force is mathematically necessary, but it disappears in a non-accelerating, inertial frame of reference. For example, consider two children on opposite sides of a spinning roundabout (carousel), who are throwing a ball to each other (see diagram). From the children's point of view, this ball's path is curved sideways by the Coriolis effect. Suppose the roundabout spins counter-clockwise when viewed from above. From the thrower's perspective, the deflection is to the right. From the non-thrower's perspective, deflection is to left. For a mathematical formulation see Mathematical derivation of fictitious forces.

An observer in a rotating frame, such as an astronaut in a rotating space station, very probably will find the interpretation of everyday life in terms of the Coriolis force accords more simply with intuition and experience than a cerebral reinterpretation of events from an inertial standpoint. For example, nausea due to an experienced push may be more instinctively explained by Coriolis force than by the law of inertia. See also Coriolis effect (perception). In meteorology, a rotating frame (the Earth) with its Coriolis force proves a more natural framework for explanation of air movements than a non-rotating, inertial frame without Coriolis forces. In long-range gunnery, sight corrections for the Earth's rotation are based upon Coriolis force. These examples are described in more detail below.

The acceleration entering the Coriolis force arises from two sources of change in velocity that result from rotation: the first is the change of the velocity of an object in time. The same velocity (in an inertial frame of reference where the normal laws of physics apply) will be seen as different velocities at different times in a rotating frame of reference. The apparent acceleration is proportional to the angular velocity of the reference frame (the rate at which the coordinate axes change direction), and to the component of velocity of the object in a plane perpendicular to the axis of rotation. This gives a term . The minus sign arises from the traditional definition of the cross product (right hand rule), and from the sign convention for angular velocity vectors.

The second is the change of velocity in space. Different positions in a rotating frame of reference have different velocities (as seen from an inertial frame of reference). In order for an object to move in a straight line it must therefore be accelerated so that its velocity changes from point to point by the same amount as the velocities of the frame of reference. The effect is proportional to the angular velocity (which determines the relative speed of two different points in the rotating frame of reference), and to the component of the velocity of the object in a plane perpendicular to the axis of rotation (which determines how quickly it moves between those points). This also gives a term .

Read more about this topic:  Coriolis Effect