Copernican Principle - Origin and Implications

Origin and Implications

Michael Rowan-Robinson emphasizes the importance of the Copernican principle: "It is evident that in the post-Copernican era of human history, no well-informed and rational person can imagine that the Earth occupies a unique position in the universe."

Hermann Bondi named the principle after Copernicus in the mid-20th century, although the principle itself dates back to the 16th-17th century paradigm shift away from the Ptolemaic system, which placed Earth at the center of the Universe. Copernicus demonstrated the motion of the planets can be explained without the assumption that Earth is centrally located and stationary. He argued that the apparent retrograde motion of the planets is an illusion caused by Earth's movement around the Sun, which the Copernican model placed at the centre of the Universe. Copernicus himself was mainly motivated by technical dissatisfaction with the earlier system and not by support for any mediocrity principle. In fact, although the Copernican heliocentric model is often described as "demoting" Earth from its central role it had in the Ptolemaic geocentric model, neither Copernicus nor other 15th- and 16th-century scientists and philosophers viewed it as such.

In cosmology, if one assumes the Copernican principle and observes that the universe appears isotropic from our vantage-point on Earth, then one can prove that the Universe is generally homogeneous (at any given time) and is also isotropic about any given point. These two conditions comprise the cosmological principle.

In practice, astronomers observe that the Universe has heterogeneous structures up to the scale of galactic superclusters, filaments and great voids, but becomes more and more homogeneous and isotropic when observed on larger and larger scales, with little detectable structure on scales of more than about 200 million parsecs. However, on scales comparable to the radius of the observable universe, we see systematic changes with distance from the Earth. For instance, galaxies contain more young stars and are less clustered, and quasars appear more numerous. While this might suggest that the Earth is at the center of the Universe, the Copernican principle requires us to interpret it as evidence for the evolution of the Universe with time: this distant light has taken most of the age of the Universe to reach and shows us the Universe when it was young. The most distant light of all, cosmic microwave background radiation, is isotropic to at least one part in a thousand.

Modern mathematical cosmology is based on the assumption that the Cosmological principle is almost, but not exactly, true on the largest scales. The Copernican principle represents the irreducible philosophical assumption needed to justify this, when combined with the observations.

Bondi and Thomas Gold used the Copernican principle to argue for the perfect cosmological principle which maintains that the universe is also homogeneous in time, and is the basis for the steady-state cosmology. However, this strongly conflicts with the evidence for cosmological evolution mentioned earlier: the Universe has progressed from extremely different conditions at the Big Bang, and will continue to progress toward extremely different conditions, particularly under the rising influence of dark energy, apparently toward the Big Freeze or Big Rip.

Read more about this topic:  Copernican Principle

Famous quotes containing the words origin and/or implications:

    Though I do not believe that a plant will spring up where no seed has been, I have great faith in a seed,—a, to me, equally mysterious origin for it.
    Henry David Thoreau (1817–1862)

    Philosophical questions are not by their nature insoluble. They are, indeed, radically different from scientific questions, because they concern the implications and other interrelations of ideas, not the order of physical events; their answers are interpretations instead of factual reports, and their function is to increase not our knowledge of nature, but our understanding of what we know.
    Susanne K. Langer (1895–1985)