Coordination Game - Mixed Nash Equilibrium

Mixed Nash Equilibrium

Coordination games also have mixed strategy Nash equilibria. In the generic coordination game above, a mixed Nash equilibrium is given by probabilities p = (d-b)/(a+d-b-c) to play Up and 1-p to play Down for player 1, and q = (D-C)/(A+D-B-C) to play Left and 1-q to play Right for player 2. Since d > b and d-b < a+d-b-c, p is always between zero and one, so existence is assured (similarly for q).

The reaction correspondences for 2×2 coordination games are shown in Fig. 6.

The pure Nash equilibria are the points in the bottom left and top right corners of the strategy space, while the mixed Nash equilibrium lies in the middle, at the intersection of the dashed lines.

Unlike the pure Nash equilibria, the mixed equilibrium is not an evolutionarily stable strategy (ESS). The mixed Nash equilibrium is also Pareto dominated by the two pure Nash equilibria (since the players will fail to coordinate with non-zero probability), a quandary that led Robert Aumann to propose the refinement of a correlated equilibrium.

Read more about this topic:  Coordination Game

Famous quotes containing the words mixed, nash and/or equilibrium:

    All nature is a temple where the alive
    Pillars breathe often a tremor of mixed words;
    Man wanders in a forest of accords
    That peer familiarly from each ogive.
    Allen Tate (1899–1979)

    It is the sin of omission, the second kind of sin,
    That lays eggs under your skin.
    —Ogden Nash (1902–1971)

    When a person hasn’t in him that which is higher and stronger than all external influences, it is enough for him to catch a good cold in order to lose his equilibrium and begin to see an owl in every bird, to hear a dog’s bark in every sound.
    Anton Pavlovich Chekhov (1860–1904)