Basis Transformation Matrix
Let B and C be two different bases of a vector space V, and let us mark with the matrix which has columns consisting of the C representation of basis vectors b1, b2, ..., bn:
This matrix is referred to as the basis transformation matrix from B to C, and can be used for transforming any vector v from a B representation to a C representation, according to the following theorem:
If E is the standard basis, the transformation from B to E can be represented with the following simplified notation:
where
- and
Read more about this topic: Coordinate Vector
Famous quotes containing the words basis and/or matrix:
“Protoplasm, simple or nucleated, is the formal basis of all life. It is the clay of the potter: which, bake it and paint it as he will, remains clay, separated by artifice, and not by nature from the commonest brick or sun-dried clod.”
—Thomas Henry Huxley (18251895)
“The matrix is God?
In a manner of speaking, although it would be more accurate ... to say that the matrix has a God, since this beings omniscience and omnipotence are assumed to be limited to the matrix.
If it has limits, it isnt omnipotent.
Exactly.... Cyberspace exists, insofar as it can be said to exist, by virtue of human agency.”
—William Gibson (b. 1948)