Cooling Tower - Wet Cooling Tower Material Balance

Wet Cooling Tower Material Balance

Quantitatively, the material balance around a wet, evaporative cooling tower system is governed by the operational variables of makeup flow rate, evaporation and windage losses, draw-off rate, and the concentration cycles.

In the adjacent diagram, water pumped from the tower basin is the cooling water routed through the process coolers and condensers in an industrial facility. The cool water absorbs heat from the hot process streams which need to be cooled or condensed, and the absorbed heat warms the circulating water (C). The warm water returns to the top of the cooling tower and trickles downward over the fill material inside the tower. As it trickles down, it contacts ambient air rising up through the tower either by natural draft or by forced draft using large fans in the tower. That contact causes a small amount of the water to be lost as windage (W) and some of the water (E) to evaporate. The heat required to evaporate the water is derived from the water itself, which cools the water back to the original basin water temperature and the water is then ready to recirculate. The evaporated water leaves its dissolved salts behind in the bulk of the water which has not been evaporated, thus raising the salt concentration in the circulating cooling water. To prevent the salt concentration of the water from becoming too high, a portion of the water is drawn off (D) for disposal. Fresh water makeup (M) is supplied to the tower basin to compensate for the loss of evaporated water, the windage loss water and the draw-off water.

Using these flow rates and concentration dimensional units:

M = Make-up water in m³/h
C = Circulating water in m³/h
D = Draw-off water in m³/h
E = Evaporated water in m³/h
W = Windage loss of water in m³/h
X = Concentration in ppmw (of any completely soluble salts … usually chlorides)
XM = Concentration of chlorides in make-up water (M), in ppmw
XC = Concentration of chlorides in circulating water (C), in ppmw
Cycles = Cycles of concentration = XC / XM (dimensionless)
ppmw = parts per million by weight

A water balance around the entire system is then:

M = E + D + W

Since the evaporated water (E) has no salts, a chloride balance around the system is:

and, therefore:

From a simplified heat balance around the cooling tower:

where:
HV = latent heat of vaporization of water = 2260 kJ / kg
ΔT = water temperature difference from tower top to tower bottom, in °C
cp = specific heat of water = 4.184 kJ / (kg°C)

Windage (or drift) losses (W) is the amount of total tower water flow that is evaporated into the atmosphere. From large-scale industrial cooling towers, in the absence of manufacturer's data, it may be assumed to be:

W = 0.3 to 1.0 percent of C for a natural draft cooling tower without windage drift eliminators
W = 0.1 to 0.3 percent of C for an induced draft cooling tower without windage drift eliminators
W = about 0.005 percent of C (or less) if the cooling tower has windage drift eliminators
W = about 0.0005 percent of C (or less) if the cooling tower has windage drift eliminators and uses sea water as make up water.

Read more about this topic:  Cooling Tower

Famous quotes containing the words wet, cooling, tower, material and/or balance:

    The yellow pool has overflowed high up on Clooth-na-Bare,
    For the wet winds are blowing out of the clinging air;
    Like heavy flooded waters our bodies and our blood;
    But purer than a tall candle before the Holy Rood
    Is Cathleen, the daughter of Houlihan.
    William Butler Yeats (1865–1939)

    As a bathtub lined with white porcelain,
    When the hot water gives out or goes tepid,
    So is the slow cooling of our chivalrous passion,
    O my much praised but-not-altogether-satisfactory lady.
    Ezra Pound (1885–1972)

    With the noise of the mourning of the Swattish nation!
    Fallen is at length
    Its tower of strength;
    Its sun is dimmed ere it had nooned;
    Dead lies the great Ahkoond,
    The great Ahkoond of Swat
    Is not!
    George Thomas Lanigan (1845–1886)

    We soon saw, as he saw, that he was not to be pardoned or rescued by men. That would have been to disarm him, to restore to him a material weapon, a Sharp’s rifle, when he had taken up the sword of the spirit,—the sword with which he has really won his greatest and most memorable victories. Now he has not laid aside the sword of the spirit, for he is pure spirit himself, and his sword is pure spirit also.
    Henry David Thoreau (1817–1862)

    The hero is a mind of such balance that no disturbances can shake his will, but pleasantly, and, as it were, merrily, he advances to his own music, alike in frightful alarms and in the tipsy mirth of universal dissoluteness.
    Ralph Waldo Emerson (1803–1882)