Convolution Theorem - Functions of A Discrete Variable... Sequences

Functions of A Discrete Variable... Sequences

By similar arguments, it can be shown that the discrete convolution of sequences and is given by:



where DTFT represents the discrete-time Fourier transform.

An important special case is the circular convolution of and defined by where is a periodic summation:

It can then be shown that:


\begin{align}
x_N * y\ &=\ \scriptstyle{DTFT}^{-1} \displaystyle \big\\
&=\ \scriptstyle{DFT}^{-1} \displaystyle \big,
\end{align}

where DFT represents the discrete Fourier transform.

The proof follows from DTFT#Periodic_data, which indicates that can be written as:

The product with is thereby reduced to a discrete-frequency function:

(also using Sampling the DTFT).

The inverse DTFT is:


\begin{align}
(x_N * y)\ &=\ \int_{0}^{1} \frac{1}{N} \sum_{k=-\infty}^{\infty} \scriptstyle{DFT}\displaystyle\{x_N\}\cdot \scriptstyle{DFT}\displaystyle\{y_N\}\cdot \delta\left(f-k/N\right)\cdot e^{i 2 \pi f n} df\\
&=\ \frac{1}{N} \sum_{k=-\infty}^{\infty} \scriptstyle{DFT}\displaystyle\{x_N\}\cdot \scriptstyle{DFT}\displaystyle\{y_N\}\cdot \int_{0}^{1} \delta\left(f-k/N\right)\cdot e^{i 2 \pi f n} df\\
&=\ \frac{1}{N} \sum_{k=0}^{N-1} \scriptstyle{DFT}\displaystyle\{x_N\}\cdot \scriptstyle{DFT}\displaystyle\{y_N\}\cdot e^{i 2 \pi \frac{n}{N} k}\\
&=\ \scriptstyle{DFT}^{-1} \displaystyle \big,
\end{align}

QED.

Read more about this topic:  Convolution Theorem

Famous quotes containing the words functions of, functions, discrete and/or variable:

    Those things which now most engage the attention of men, as politics and the daily routine, are, it is true, vital functions of human society, but should be unconsciously performed, like the corresponding functions of the physical body.
    Henry David Thoreau (1817–1862)

    In today’s world parents find themselves at the mercy of a society which imposes pressures and priorities that allow neither time nor place for meaningful activities and relations between children and adults, which downgrade the role of parents and the functions of parenthood, and which prevent the parent from doing things he wants to do as a guide, friend, and companion to his children.
    Urie Bronfenbrenner (b. 1917)

    The mastery of one’s phonemes may be compared to the violinist’s mastery of fingering. The violin string lends itself to a continuous gradation of tones, but the musician learns the discrete intervals at which to stop the string in order to play the conventional notes. We sound our phonemes like poor violinists, approximating each time to a fancied norm, and we receive our neighbor’s renderings indulgently, mentally rectifying the more glaring inaccuracies.
    W.V. Quine (b. 1908)

    Walked forth to ease my pain
    Along the shore of silver streaming Thames,
    Whose rutty bank, the which his river hems,
    Was painted all with variable flowers,
    Edmund Spenser (1552?–1599)