Convergence in Probability
Height of a person | |
---|---|
Consider the following experiment. First, pick a random person in the street. Let X be his/her height, which is ex ante a random variable. Then you start asking other people to estimate this height by eye. Let Xn be the average of the first n responses. Then (provided there is no systematic error) by the law of large numbers, the sequence Xn will converge in probability to the random variable X. | |
Archer | |
Suppose a person takes a bow and starts shooting arrows at a target. Let Xn be his score in n-th shot. Initially he will be very likely to score zeros, but as the time goes and his archery skill increases, he will become more and more likely to hit the bullseye and score 10 points. After the years of practice the probability that he hit anything but 10 will be getting increasingly smaller and smaller. Thus, the sequence Xn converges in probability to X = 10. Note that Xn does not converge almost surely however. No matter how professional the archer becomes, there will always be a small probability of making an error. Thus the sequence {Xn} will never turn stationary: there will always be non-perfect scores in it, even if they are becoming increasingly less frequent. |
The basic idea behind this type of convergence is that the probability of an “unusual” outcome becomes smaller and smaller as the sequence progresses.
The concept of convergence in probability is used very often in statistics. For example, an estimator is called consistent if it converges in probability to the quantity being estimated. Convergence in probability is also the type of convergence established by the weak law of large numbers.
Read more about this topic: Convergence Of Random Variables
Famous quotes containing the word probability:
“Legends of prediction are common throughout the whole Household of Man. Gods speak, spirits speak, computers speak. Oracular ambiguity or statistical probability provides loopholes, and discrepancies are expunged by Faith.”
—Ursula K. Le Guin (b. 1929)