Control System - Fuzzy Logic

Fuzzy Logic

Further information: Fuzzy logic

Fuzzy logic is an attempt to apply the easy design of logic controllers to the control of complex continuously-varying systems. Basically, a measurement in a fuzzy logic system can be partly true, that is if yes is 1 and no is 0, a fuzzy measurement can be between 0 and 1.

The rules of the system are written in natural language and translated into fuzzy logic. For example, the design for a furnace would start with: "If the temperature is too high, reduce the fuel to the furnace. If the temperature is too low, increase the fuel to the furnace."

Measurements from the real world (such as the temperature of a furnace) are converted to values between 0 and 1 by seeing where they fall on a triangle. Usually the tip of the triangle is the maximum possible value which translates to "1."

Fuzzy logic, then, modifies Boolean logic to be arithmetical. Usually the "not" operation is "output = 1 - input," the "and" operation is "output = input.1 multiplied by input.2," and "or" is "output = 1 - ((1 - input.1) multiplied by (1 - input.2))". This reduces to Boolean arithmetic if values are restricted to 0 and 1, instead of allowed to range in the unit interval .

The last step is to "defuzzify" an output. Basically, the fuzzy calculations make a value between zero and one. That number is used to select a value on a line whose slope and height converts the fuzzy value to a real-world output number. The number then controls real machinery.

If the triangles are defined correctly and rules are right the result can be a good control system.

When a robust fuzzy design is reduced into a single, quick calculation, it begins to resemble a conventional feedback loop solution and it might appear that the fuzzy design was unnecessary. However, the fuzzy logic paradigm may provide scalability for large control systems where conventional methods become unwieldy or costly to derive.

Fuzzy electronics is an electronic technology that uses fuzzy logic instead of the two-value logic more commonly used in digital electronics.

Read more about this topic:  Control System

Famous quotes containing the words fuzzy and/or logic:

    What do you think of us in fuzzy endeavor, you whose directions are sterling, whose lunge is straight?
    Can you make a reason, how can you pardon us who memorize the rules and never score?
    Gwendolyn Brooks (b. 1917)

    Neither Aristotelian nor Russellian rules give the exact logic of any expression of ordinary language; for ordinary language has no exact logic.
    Sir Peter Frederick Strawson (b. 1919)