Properties
A continuous linear operator maps bounded sets into bounded sets. A linear functional is continuous if and only if its kernel is closed. Every linear function on a finite-dimensional space is continuous.
The following are equivalent: given a linear operator A between topological spaces X and Y:
- A is continuous at 0 in X.
- A is continuous at some point in X.
- A is continuous everywhere in X.
The proof uses the facts that the translation of an open set in a linear topological space is again an open set, and the equality
for any set D in Y and any x0 in X, which is true due to the additivity of A.
Read more about this topic: Continuous Linear Operator
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)