Continuous Linear Extension
In functional analysis, it is often convenient to define a linear transformation on a complete, normed vector space by first defining a linear transformation on a dense subset of and then extending to the whole space via the theorem below. The resulting extension remains linear and bounded (thus continuous).
This procedure is known as continuous linear extension.
Read more about Continuous Linear Extension: Theorem, Application, The Hahn–Banach Theorem
Famous quotes containing the words continuous and/or extension:
“There is no such thing as a life of passion any more than a continuous earthquake, or an eternal fever. Besides, who would ever shave themselves in such a state?”
—George Gordon Noel Byron (17881824)
“The medium is the message. This is merely to say that the personal and social consequences of any mediumthat is, of any extension of ourselvesresult from the new scale that is introduced into our affairs by each extension of ourselves, or by any new technology.”
—Marshall McLuhan (19111980)