Context-free Grammar - Normal Forms

Normal Forms

Every context-free grammar that does not generate the empty string can be transformed into one in which no rule has the empty string as a product . If it does generate the empty string, it will be necessary to include the rule, but there need be no other ε-rule. Every context-free grammar with no ε-production has an equivalent grammar in Chomsky normal form or Greibach normal form. "Equivalent" here means that the two grammars generate the same language.

Because of the especially simple form of production rules in Chomsky Normal Form grammars, this normal form has both theoretical and practical implications. For instance, given a context-free grammar, one can use the Chomsky Normal Form to construct a polynomial-time algorithm that decides whether a given string is in the language represented by that grammar or not (the CYK algorithm).

Read more about this topic:  Context-free Grammar

Famous quotes containing the words normal and/or forms:

    What strikes many twin researchers now is not how much identical twins are alike, but rather how different they are, given the same genetic makeup....Multiples don’t walk around in lockstep, talking in unison, thinking identical thoughts. The bond for normal twins, whether they are identical or fraternal, is based on how they, as individuals who are keenly aware of the differences between them, learn to relate to one another.
    Pamela Patrick Novotny (20th century)

    Our character is not so much the product of race and heredity as of those circumstances by which nature forms our habits, by which we are nurtured and live.
    Marcus Tullius Cicero (106–43 B.C.)