Definition
Suppose G is a group. Two elements a and b of G are called conjugate if there exists an element g in G with
- gag−1 = b.
(In linear algebra, this is referred to as matrix similarity.)
It can be readily shown that conjugacy is an equivalence relation and therefore partitions G into equivalence classes. (This means that every element of the group belongs to precisely one conjugacy class, and the classes Cl(a) and Cl(b) are equal if and only if a and b are conjugate, and disjoint otherwise.) The equivalence class that contains the element a in G is
- Cl(a) = { gag−1: g ∈ G }
and is called the conjugacy class of a. The class number of G is the number of distinct (nonequivalent) conjugacy classes.
Conjugacy classes may be referred to by describing them, or more briefly by abbreviations such as "6A", meaning "a certain conjugacy class of order 6 elements", and "6B" would be a different conjugacy class of order 6 elements; the conjugacy class 1A is the conjugacy class of the identity. In some cases, conjugacy classes can be described in a uniform way – for example, in the symmetric group they can be described by cycle structure.
Read more about this topic: Conjugacy Class
Famous quotes containing the word definition:
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)