Uses in Bayesian Inference
Let p be the proportion of voters who will vote "yes" in an upcoming referendum. In taking an opinion poll, one chooses n voters randomly from the population. For i = 1, ..., n, let Xi = 1 or 0 according as the ith chosen voter will or will not vote "yes".
In a frequentist approach to statistical inference one would not attribute any probability distribution to p (unless the probabilities could be somehow interpreted as relative frequencies of occurrence of some event or as proportions of some population) and one would say that X1, ..., Xn are independent random variables.
By contrast, in a Bayesian approach to statistical inference, one would assign a probability distribution to p regardless of the non-existence of any such "frequency" interpretation, and one would construe the probabilities as degrees of belief that p is in any interval to which a probability is assigned. In that model, the random variables X1, ..., Xn are not independent, but they are conditionally independent given the value of p. In particular, if a large number of the Xs are observed to be equal to 1, that would imply a high conditional probability, given that observation, that p is near 1, and thus a high conditional probability, given that observation, that the next X to be observed will be equal to 1.
Read more about this topic: Conditional Independence
Famous quotes containing the word inference:
“I have heard that whoever loves is in no condition old. I have heard that whenever the name of man is spoken, the doctrine of immortality is announced; it cleaves to his constitution. The mode of it baffles our wit, and no whisper comes to us from the other side. But the inference from the working of intellect, hiving knowledge, hiving skill,at the end of life just ready to be born,affirms the inspirations of affection and of the moral sentiment.”
—Ralph Waldo Emerson (18031882)