Conditional Entropy - Chain Rule

Chain Rule

Assume that the combined system determined by two random variables X and Y has entropy, that is, we need bits of information to describe its exact state. Now if we first learn the value of, we have gained bits of information. Once is known, we only need bits to describe the state of the whole system. This quantity is exactly, which gives the chain rule of conditional probability:

Formally, the chain rule indeed follows from the above definition of conditional probability:

\begin{align}
H(Y|X)=&\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x)} {p(x,y)}\\ =&-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(x,y) + \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(x) \\
=& H(X,Y) + \sum_{x \in \mathcal X} p(x)\log\,p(x) \\
=& H(X,Y) - H(X).
\end{align}

Read more about this topic:  Conditional Entropy

Famous quotes containing the words chain and/or rule:

    Oh yes, that’s right. They chain up wild animals. That’s all I am, an animal.
    John Elder [Anthony Hinds], British screenwriter, and Terence Fisher. Leon (Oliver Reed)

    Every man needs slaves like he needs clean air. To rule is to breathe, is it not? And even the most disenfranchised get to breathe. The lowest on the social scale have their spouses or their children.
    Albert Camus (1913–1960)