Relative Concreteness
In some parts of category theory, most notably topos theory, it is common to replace the category Set with a different category X, often called a base category. For this reason, it makes sense to call a pair (C,U) where C is a category and U a faithful functor C → X a concrete category over X. For example, it may be useful to think of the models of a theory with N sorts as forming a concrete category over SetN.
In this context, a concrete category over Set is sometimes called a construct.
Read more about this topic: Concrete Category
Famous quotes containing the word relative:
“Three elements go to make up an idea. The first is its intrinsic quality as a feeling. The second is the energy with which it affects other ideas, an energy which is infinite in the here-and-nowness of immediate sensation, finite and relative in the recency of the past. The third element is the tendency of an idea to bring along other ideas with it.”
—Charles Sanders Peirce (18391914)