History
An early commercial applications of CAM was in large companies in the automotive and aerospace industries for example Pierre Beziers work developing the CAD/CAM application UNISURF in the 60's for car body design and tooling at Renault.
Historically, CAM software was seen to have several shortcomings that necessitated an overly high level of involvement by skilled CNC machinists. Fallows created the first CAM software but this had severe shortcomings and was promptly taken back into the developing stage. CAM software would output code for the least capable machine, as each machine tool control added on to the standard G-code set for increased flexibility. In some cases, such as improperly set up CAM software or specific tools, the CNC machine required manual editing before the program will run properly. None of these issues were so insurmountable that a thoughtful engineer or skilled machine operator could not overcome for prototyping or small production runs; G-Code is a simple language. In high production or high precision shops, a different set of problems were encountered where an experienced CNC machinist must both hand-code programs and run CAM software.
Integration of CAD with other components of CAD/CAM/CAE Product lifecycle management (PLM) environment requires an effective CAD data exchange. Usually it had been necessary to force the CAD operator to export the data in one of the common data formats, such as IGES or STL, that are supported by a wide variety of software. The output from the CAM software is usually a simple text file of G-code, sometimes many thousands of commands long, that is then transferred to a machine tool using a direct numerical control (DNC) program.
CAM packages could not, and still cannot, reason as a machinist can. They could not optimize toolpaths to the extent required of mass production. Users would select the type of tool, machining process and paths to be used. While an engineer may have a working knowledge of G-code programming, small optimization and wear issues compound over time. Mass-produced items that require machining are often initially created through casting or some other non-machine method. This enables hand-written, short, and highly optimised G-code that could not be produced in a CAM package.
At least in the United States, there is a shortage of young, skilled machinists entering the workforce able to perform at the extremes of manufacturing; high precision and mass production. As CAM software and machines become more complicated, the skills required of a machinist or machine operator advance to approach that of a computer programmer and engineer rather than eliminating the CNC machinist from the workforce.
Typical areas of concern:
- High Speed Machining, including streamlining of tool paths
- Multi-function Machining
- 5 Axis Machining
- Feature recognition and machining
- Automation of Machining processes
- Ease of Use
Read more about this topic: Computer-aided Manufacturing
Famous quotes containing the word history:
“The myth of independence from the mother is abandoned in mid- life as women learn new routes around the motherboth the mother without and the mother within. A mid-life daughter may reengage with a mother or put new controls on care and set limits to love. But whatever she does, her childs history is never finished.”
—Terri Apter (20th century)
“A people without history
Is not redeemed from time, for history is a pattern
Of timeless moments.”
—T.S. (Thomas Stearns)
“I believe that history might be, and ought to be, taught in a new fashion so as to make the meaning of it as a process of evolution intelligible to the young.”
—Thomas Henry Huxley (182595)