Computational Physics

Computational physics is the study and implementation of numerical algorithms to solve problems in physics for which a quantitative theory already exists. It is often regarded as a subdiscipline of theoretical physics but some consider it an intermediate branch between theoretical and experimental physics.

Physicists often have a very precise mathematical theory describing how a system will behave. Unfortunately, it is often the case that solving the theory's equations ab initio in order to produce a useful prediction is not practical. This is especially true with quantum mechanics, where only a handful of simple models admit closed-form, analytic solutions. In cases where the equations can only be solved approximately, computational methods are often used.

Read more about Computational Physics:  Applications of Computational Physics

Famous quotes containing the word physics:

    The pace of science forces the pace of technique. Theoretical physics forces atomic energy on us; the successful production of the fission bomb forces upon us the manufacture of the hydrogen bomb. We do not choose our problems, we do not choose our products; we are pushed, we are forced—by what? By a system which has no purpose and goal transcending it, and which makes man its appendix.
    Erich Fromm (1900–1980)