Complex Systems - Overview

Overview

The study of mathematical complex system models is used for many scientific questions poorly suited to the traditional mechanistic conception provided by science. Complex systems is therefore often used as a broad term encompassing a research approach to problems in many diverse disciplines including anthropology, artificial intelligence, artificial life, chemistry, computer science, economics, evolutionary computation, earthquake prediction, meteorology, molecular biology, neuroscience, physics, psychology and sociology.

In these endeavors, scientists often seek simple non-linear coupling rules which lead to complex phenomena (rather than describe; see above), but this need not be the case. Human societies (and probably human brains) are complex systems in which neither the components nor the couplings are simple. Nevertheless, they exhibit many of the hallmarks of complex systems. It is worth remarking that non-linearity is not a necessary feature of complex systems modeling: macro-analyses that concern unstable equilibrium and evolution processes of certain biological/social/economic systems can usefully be carried out also by sets of linear equations, which do nevertheless entail reciprocal dependence between variable parameters.

Traditionally, engineering has striven to solve the non-linear system problem while bearing in mind that for small perturbations, most non-linear systems can be approximated with linear systems significantly simplifying the analysis. Linear systems represent the main class of systems for which general techniques for stability control and analysis exist. However, many physical systems (for example lasers) are inherently "complex systems" in terms of the definition above, and engineering practice must now include elements of complex systems research.

Information theory applies well to the complex adaptive systems, CAS, through the concepts of object oriented design, as well as through formalized concepts of organization and disorder that can be associated with any systems evolution process.

Read more about this topic:  Complex Systems