The Complex Logarithm As A Conformal Map
Any holomorphic map satisfying for all is a conformal map, which means that if two curves passing through a point a of U form an angle α (in the sense that the tangent lines to the curves at a form an angle α), then the images of the two curves form the same angle α at f(a). Since a branch of log z is holomorphic, and since its derivative 1/z is never 0, it defines a conformal map.
For example, the principal branch w = Log z, viewed as a mapping from to the horizontal strip defined by |Im z| < π, has the following properties, which are direct consequences of the formula in terms of polar form:
- Circles in the z-plane centered at 0 are mapped to vertical segments in the w-plane connecting a − πi to a + πi, where a is a real number depending on the radius of the circle.
- Rays emanating from 0 in the z-plane are mapped to horizontal lines in the w-plane.
Each circle and ray in the z-plane as above meet at a right angle. Their images under Log are a vertical segment and a horizontal line (respectively) in the w-plane, and these too meet at a right angle. This is an illustration of the conformal property of Log.
Read more about this topic: Complex Logarithm
Famous quotes containing the words complex and/or map:
“What we do is as American as lynch mobs. America has always been a complex place.”
—Jerry Garcia (19421995)
“When I had mapped the pond ... I laid a rule on the map lengthwise, and then breadthwise, and found, to my surprise, that the line of greatest length intersected the line of greatest breadth exactly at the point of greatest depth.”
—Henry David Thoreau (18171862)