Problems With Inverting The Complex Exponential Function
For a function to have an inverse, it must map distinct values to distinct values. But the complex exponential function does not have this injective property because: ew+2πi = ew for any w, since adding iθ to w has the effect of rotating ew counterclockwise θ radians. Even worse, the infinitely many numbers
forming a sequence of equally spaced points along a vertical line, are all mapped to the same number by the exponential function. So the exponential function does not have an inverse function in the standard sense.
There are two solutions to this problem.
One is to restrict the domain of the exponential function to a region that does not contain any two numbers differing by an integer multiple of 2πi: this leads naturally to the definition of branches of log z, which are certain functions that single out one logarithm of each number in their domains. This is analogous to the definition of sin−1x on as the inverse of the restriction of sin θ to the interval : there are infinitely many real numbers θ with sin θ = x, but one (somewhat arbitrarily) chooses the one in .
Another way to resolve the indeterminacy is to view the logarithm as a function whose domain is not a region in the complex plane, but a Riemann surface that covers the punctured complex plane in an infinite-to-1 way.
Branches have the advantage that they can be evaluated at complex numbers. On the other hand, the function on the Riemann surface is elegant in that it packages together all branches of log z and does not require any choice for its definition.
Read more about this topic: Complex Logarithm
Famous quotes containing the words problems, complex and/or function:
“The three great problems of this century, the degradation of man in the proletariat, the subjection of women through hunger, the atrophy of the child by darkness.”
—Victor Hugo (18021885)
“We must open our eyes and see that modern civilization has become so complex and the lives of civilized men so interwoven with the lives of other men in other countries as to make it impossible to be in this world and out of it.”
—Franklin D. Roosevelt (18821945)
“Morality and its victim, the motherwhat a terrible picture! Is there indeed anything more terrible, more criminal, than our glorified sacred function of motherhood?”
—Emma Goldman (18691940)