Properties
The complete graph on n vertices is denoted by Kn. Some sources claim that the letter K in this notation stands for the German word komplett, but the German name for a complete graph, vollständiger Graph, does not contain the letter K, and other sources state that the notation honors the contributions of Kazimierz Kuratowski to graph theory.
Kn has n(n − 1)/2 edges (a triangular number), and is a regular graph of degree n − 1. All complete graphs are their own maximal cliques. They are maximally connected as the only vertex cut which disconnects the graph is the complete set of vertices. The complement graph of a complete graph is an empty graph.
If the edges of a complete graph are each given an orientation, the resulting directed graph is called a tournament.
The number of matchings of the complete graphs are given by the telephone numbers
- 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, ... (sequence A000085 in OEIS).
These numbers give the largest possible value of the Hosoya index for an n-vertex graph.
Read more about this topic: Complete Graph
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)