Complete Graph - Geometry and Topology

Geometry and Topology

A complete graph with n nodes represents the edges of an (n − 1)-simplex. Geometrically K3 forms the edge set of a triangle, K4 a tetrahedron, etc. The Császár polyhedron, a nonconvex polyhedron with the topology of a torus, has the complete graph K7 as its skeleton. Every neighborly polytope in four or more dimensions also has a complete skeleton.

K1 through K4 are all planar graphs. However, every planar drawing of a complete graph with five or more vertices must contain a crossing, and the nonplanar complete graph K5 plays a key role in the characterizations of planar graphs: by Kuratowski's theorem, a graph is planar if and only if it contains neither K5 nor the complete bipartite graph K3,3 as a subdivision, and by Wagner's theorem the same result holds for graph minors in place of subdivisions. As part of the Petersen family, K6 plays a similar role as one of the forbidden minors for linkless embedding. In other words, and as Conway and Gordon proved, every embedding of K6 is intrinsically linked, with at least one pair of linked triangles. Conway and Gordon also showed that any embedding of K7 contains a knotted Hamiltonian cycle.

Read more about this topic:  Complete Graph

Famous quotes containing the word geometry:

    I am present at the sowing of the seed of the world. With a geometry of sunbeams, the soul lays the foundations of nature.
    Ralph Waldo Emerson (1803–1882)