Equivalent Formulations
A bounded operator T is compact if and only if any of the following is true
- Image of the unit ball in X under T is relatively compact in Y.
- Image of any bounded set under T is relatively compact in Y.
- Image of any bounded set under T is totally bounded in Y.
- there exists a neighbourhood of 0, and compact set such that .
- For any sequence from the unit ball in X, the sequence contains a Cauchy subsequence.
Note that if a linear operator is compact, then it is easy to see that it is bounded, and hence continuous.
Read more about this topic: Compact Operator
Famous quotes containing the word equivalent:
“But then people dont read literature in order to understand; they read it because they want to re-live the feelings and sensations which they found exciting in the past. Art can be a lot of things; but in actual practice, most of it is merely the mental equivalent of alcohol and cantharides.”
—Aldous Huxley (18941963)