Compact Operator - Completely Continuous Operators

Completely Continuous Operators

Let X and Y be Banach spaces. A bounded linear operator T : XY is called completely continuous if, for every weakly convergent sequence from X, the sequence is norm-convergent in Y (Conway 1985, §VI.3). Compact operators on a Banach space are always completely continuous. If X is a reflexive Banach space, then every completely continuous operator T : XY is compact.

Read more about this topic:  Compact Operator

Famous quotes containing the words completely and/or continuous:

    Man, truly the animal that talks, is the only one that needs conversations to propagate its species.... In love conversations play an almost greater role than anything else. Love is the most talkative of all feelings and consists to a great extent completely of talkativeness.
    Robert Musil (1880–1942)

    We read poetry because the poets, like ourselves, have been haunted by the inescapable tyranny of time and death; have suffered the pain of loss, and the more wearing, continuous pain of frustration and failure; and have had moods of unlooked-for release and peace. They have known and watched in themselves and others.
    Elizabeth Drew (1887–1965)