Completely Continuous Operators
Let X and Y be Banach spaces. A bounded linear operator T : X → Y is called completely continuous if, for every weakly convergent sequence from X, the sequence is norm-convergent in Y (Conway 1985, §VI.3). Compact operators on a Banach space are always completely continuous. If X is a reflexive Banach space, then every completely continuous operator T : X → Y is compact.
Read more about this topic: Compact Operator
Famous quotes containing the words completely and/or continuous:
“Man, truly the animal that talks, is the only one that needs conversations to propagate its species.... In love conversations play an almost greater role than anything else. Love is the most talkative of all feelings and consists to a great extent completely of talkativeness.”
—Robert Musil (18801942)
“For Lawrence, existence was one continuous convalescence; it was as though he were newly reborn from a mortal illness every day of his life. What these convalescent eyes saw, his most casual speech would reveal.”
—Aldous Huxley (18941963)