Completely Continuous Operators
Let X and Y be Banach spaces. A bounded linear operator T : X → Y is called completely continuous if, for every weakly convergent sequence from X, the sequence is norm-convergent in Y (Conway 1985, §VI.3). Compact operators on a Banach space are always completely continuous. If X is a reflexive Banach space, then every completely continuous operator T : X → Y is compact.
Read more about this topic: Compact Operator
Famous quotes containing the words completely and/or continuous:
“That the world is not the embodiment of an eternal rationality can be conclusively proved by the fact that the piece of the world that we knowI mean our human reasonis not so very rational. And if it is not eternally and completely wise and rational, then the rest of the world will not be either; here the conclusion a minori ad majus, a parte ad totum applies, and does so with decisive force.”
—Friedrich Nietzsche (18441900)
“The gap between ideals and actualities, between dreams and achievements, the gap that can spur strong men to increased exertions, but can break the spirit of othersthis gap is the most conspicuous, continuous land mark in American history. It is conspicuous and continuous not because Americans achieve little, but because they dream grandly. The gap is a standing reproach to Americans; but it marks them off as a special and singularly admirable community among the worlds peoples.”
—George F. Will (b. 1941)