Completely Continuous Operators
Let X and Y be Banach spaces. A bounded linear operator T : X → Y is called completely continuous if, for every weakly convergent sequence from X, the sequence is norm-convergent in Y (Conway 1985, §VI.3). Compact operators on a Banach space are always completely continuous. If X is a reflexive Banach space, then every completely continuous operator T : X → Y is compact.
Read more about this topic: Compact Operator
Famous quotes containing the words completely and/or continuous:
“Not Seeing is Believing you ninny, but Believing is Seeing. For modern art has become completely literary: the paintings and other works exist only to illustrate the text.”
—Tom Wolfe (b. 1931)
“The problem, thus, is not whether or not women are to combine marriage and motherhood with work or career but how they are to do soconcomitantly in a two-role continuous pattern or sequentially in a pattern involving job or career discontinuities.”
—Jessie Bernard (20th century)